A Poincaré–type Inequality on the Euclidean Unit Sphere
نویسندگان
چکیده
We consider the second variation for the volume of convex bodies associated with the Lp Minkowski-Firey combination and obtain a Poincaré-type inequality on the Euclidean unit sphere Sn−1 . Mathematics subject classification (2010): 52A20.
منابع مشابه
Characterizations of Function Spaces on the Sphere Using Frames
In this paper we introduce a polynomial frame on the unit sphere Sd−1 of Rd, for which every distribution has a wavelet-type decomposition. More importantly, we prove that many function spaces on the sphere Sd−1, such as Lp, Hp and Besov spaces, can be characterized in terms of the coefficients in the wavelet decompositions, as in the usual Euclidean case Rd. We also study a related nonlinear m...
متن کاملSuper Poincaré and Nash-type inequalities for Subordinated Semigroups
We prove that if a super-Poincaré inequality is satisfied by an infinitesimal generator −A of a symmetric contraction semigroup on L2 and that is contracting on L1, then it implies a corresponding super-Poincaré inequality for −g(A) for any Bernstein function g. We also study the converse of this statement. We prove similar results for Nash-type inequalities. We apply our results to Euclidean, ...
متن کاملBonnesen-type inequalities for surfaces of constant curvature
A Bonnesen-type inequality is a sharp isoperimetric inequality that includes an error estimate in terms of inscribed and circumscribed regions. A kinematic technique is used to prove a Bonnesen-type inequality for the Euclidean sphere (having constant Gauss curvature κ > 0) and the hyperbolic plane (having constant Gauss curvature κ < 0). These generalized inequalities each converge to the clas...
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملUniversal Bounds for Eigenvalues of Schrödinger Operator on Riemannian Manifolds
Abstract. In this paper we consider eigenvalues of Schrödinger operator with a weight on compact Riemannian manifolds with boundary (possibly empty) and prove a general inequality for them. By using this inequality, we study eigenvalues of Schrödinger operator with a weight on compact domains in a unit sphere, a complex projective space and a minimal submanifold in a Euclidean space. We also st...
متن کامل